Case study: optimized building footprint with VisualARQ Grasshopper Components

Thanks to the VisualARQ Grasshopper components, we are seeing VisualARQ used to further research on practical uses for Genetic Algorithms and Analysis in BIM workflows.

Vlad Vermesan, an architecture student at the Faculty of Architecture and Fine Art, NTNU, Norway has completed his thesis related to the development of a methodology of parametric suburban and architectural design utilizing VisualARQ Grasshopper Components, Ladybug, Space Syntax, Clipper and Galapagos. This level of analysis at the early stages of design clearly shows the power of #flexibleBIM enabled by VisualARQ, Rhinoceros 3d, and Grasshopper.

Vlad explains:

“My work is about parametric suburban design. I have developed many parametric models where components can be manipulated in order to conduct simulations and various multi-variable optimizations. The generic suburban architectural building, which is at the core of the methodology, gives the sensation and spatial quality of a home in all possible aspects related to form, functionality and comfort. The buildings’ forms, thanks to the parametric design method, are not common and vary depending on the neighborhood, and can be seemingly endlessly individualized.

While in urban environments intelligent shaping happens often vertically, in suburbs it can happen horizontally, because there is more space, (i.e., distance between buildings). Thus, variation and attractive architecture can be achieved by the intelligent shaping of the building footprint according to local tones, design traditions and functionality, and even optimized according to climate conditions. The process starts with some reasonable assumptions about the size of the functional units and their relationships, in order to obtain a functional and efficient ground floor. The ground floor shape is then used to run more complex simulations on both horizontal and vertical plans incorporating climate conditions.

Vlad Vermesan Case study VisualARQ

This is what the case study is about: manipulating the building footprint shape based on intelligent rules in order to maximize/minimize radiation during heating/cooling periods. The parametric building has been generated using VisualARQ Grasshopper Components: walls, windows, slabs and roofs, which provide BIM elements for the final building instead of simple extrusions from the shapes. This ensures credibility to the simulation results.

My experience is that VisualARQ integrates very well in the parametric environment bringing together spatial elements, topology, environment and optimization. Running optimization scenarios with changing building footprint shapes in 2D and seeing the resulting building in 3D almost instantly thanks to VisualARQ, is really rewarding. You can stop any time, compare different shapes and choose the one which is most appealing, not necessarily the optimum one.

In this way, the architect can add their unique style to the solutions provided by the parametric model.

The video shows that one of the solutions offers a concave footprint shape, which opens for an outdoor atrium, (inspired in the “Zeb Pilot House” project of Snøhetta architectural firm) contributing to a homely atmosphere and feeling of comfort.

Credits: Vlad Vermesan: